Degradation of transcription repressor ZBRK1 through the ubiquitin-proteasome pathway relieves repression of Gadd45a upon DNA damage.
نویسندگان
چکیده
Induction of gene expression in response to DNA damage is important for repairing damaged DNA for cell survival. Previously, we identified a novel zinc finger protein, ZBRK1, which contains a KRAB domain at the N terminus, eight zinc fingers at the center, and a BRCA1-binding region at the C terminus. In a BRCA1-dependent manner, ZBRK1 represses Gadd45a transcription through binding to a specific sequence in intron 3. In addition, ZBRK1-binding sequences are located at the regulatory region of many DNA damage-inducible genes, suggesting that ZBRK1 may have a role in DNA damage response. However, it is unclear how transcription repression by ZBRK1 is relieved subsequent to DNA damage. Here we report that ZBRK1 is rapidly degraded upon treatment with the DNA-damaging agents UV and methyl methanesulfonate. Specific proteasome inhibitors block DNA damage-induced degradation of ZBRK1, and the polyubiquitinated form of ZBRK1 is detectable, suggesting that the ubiquitin-proteasome pathway mediates the degradation of ZBRK1. In both BRCA1-proficient and -deficient cells, ZBRK1 is degraded with similar efficiencies independent of BRCA1 E3 ligase activity. By analysis of a series of ZBRK1 mutants, a 44-amino-acid element located between the N-terminal KRAB domain and the eight zinc fingers was found to be sufficient for the DNA damage-induced degradation of ZBRK1. Cells expressing a ZBRK1 mutant lacking the 44-amino-acid element are hypersensitive to DNA damage and are compromised for Gadd45a derepression. These results indicate that ZBRK1 is a novel target for DNA damage-induced degradation and provide a mechanistic explanation of how ZBRK1 is regulated in response to DNA damage.
منابع مشابه
Ligand-dependent corepressor contributes to transcriptional repression by C2H2 zinc-finger transcription factor ZBRK1 through association with KRAB-associated protein-1
We identified a novel interaction between ligand-dependent corepressor (LCoR) and the corepressor KRAB-associated protein-1 (KAP-1). The two form a complex with C2H2 zinc-finger transcription factor ZBRK1 on an intronic binding site in the growth arrest and DNA-damage-inducible α (GADD45A) gene and a novel site in the fibroblast growth factor 2 (FGF2) gene. Chromatin at both sites is enriched f...
متن کاملKaposi's sarcoma-associated herpesvirus RTA promotes degradation of the Hey1 repressor protein through the ubiquitin proteasome pathway.
The Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) protein regulates the latent-lytic switch by transactivating a variety of KSHV lytic and cellular promoters. RTA is a novel E3 ubiquitin ligase that targets a number of transcriptional repressor proteins for degradation by the ubiquitin proteasome pathway. Herein, we show that RTA interacts with the...
متن کاملProteolysis-Independent Downregulation of DELLA Repression in Arabidopsis by the Gibberellin Receptor GIBBERELLIN INSENSITIVE DWARF1 W
This article presents evidence that DELLA repression of gibberellin (GA) signaling is relieved both by proteolysis-dependent and -independent pathways in Arabidopsis thaliana. DELLA proteins are negative regulators of GA responses, including seed germination, stem elongation, and fertility. GA stimulates GA responses by causing DELLA repressor degradation via the ubiquitin-proteasome pathway. D...
متن کاملLigand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins.
Smads are signal mediators for the members of the transforming growth factor-beta (TGF-beta) superfamily. Upon phosphorylation by the TGF-beta receptors, Smad3 translocates into the nucleus, recruits transcriptional coactivators and corepressors, and regulates transcription of target genes. Here, we show that Smad3 activated by TGF-beta is degraded by the ubiquitin-proteasome pathway. Smad3 int...
متن کاملKeap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
The transcription factor Nrf2 regulates cellular redox homeostasis. Under basal conditions, Keap1 recruits Nrf2 into the Cul3-containing E3 ubiquitin ligase complex for ubiquitin conjugation and subsequent proteasomal degradation. Oxidative stress triggers activation of Nrf2 through inhibition of E3 ubiquitin ligase activity, resulting in increased levels of Nrf2 and transcriptional activation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 23 20 شماره
صفحات -
تاریخ انتشار 2003